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Abstract

Multimodal sentiment analysis aims to integrate diverse
modalities for precise emotional interpretation. However, ex-
ternal factors such as sensor malfunctions or network issues
may disrupt certain modalities. This may lead to missing data,
which poses challenges in real-world deployment. Most ex-
isting approaches focus on designing feature reconstruction
strategies, overlooking the collaborative integration of recon-
struction and fusion strategies. Moreover, they fail to capture
the relationships between features in the global dimension
and those in the local dimension. These limitations hinder the
full capture of the complex nature of multimodal data, espe-
cially in scenarios involving missing modalities. To address
the above issues, this paper proposes a robust model named
MFMB-Net with multiple branches for feature multi-focus
fusion and reconstruction. We design a two-stream fusion
branch where macro-fusion focuses on the fusion of features
in the global dimension and micro-fusion targets local di-
mension features. This dual-stream fusion branch distributes
multi-focus across both pathways, simultaneously capturing
global coarse-grained and local fine-grained features. Addi-
tionally, the reconstruction branch interacts collaboratively
with the fusion branch to reconstruct and enhance the missing
data. It integrates the reconstructed feature information with
the fused information thus refining the representation fidelity
of the missing information. Experiments performed on two
benchmarks show that our approach obtains results superior
to state-of-the-art models.

Code — https://github.com/MFMB-Net/MFMB-Net

Introduction
Recently, with the increased use of social media and the
improvement of video quality, multimodal sentiment anal-
ysis (MSA) has become a significant domain in the field
of sentiment analysis and has attracted widespread attention
(Morency, Mihalcea, and Doshi 2011). MSA broadens tradi-
tional text-based sentiment analysis by adding audio and vi-
sual modalities, enabling the detection of subtle cues missed
in text-only analysis. This comprehensive approach provides
insights into online behaviors and emotional expressions.
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Figure 1: Scenarios that may result in modality missing.

The core of MSA lies in multimodal representation learn-
ing and multimodal fusion. These components are crucial to
MSA’s effectiveness in modeling and analyzing emotional
expressions. The former is the process of extracting features
from different sources and transforming these features into
representations that can be processed by the model. The lat-
ter combines representations learned from different modal-
ities to form a unified, integrated representation that more
comprehensively reflects the complexity of emotions. And
so far, many models have been proposed to address multi-
modal representation learning (Hazarika, Zimmermann, and
Poria 2020; Yu et al. 2021; Lin and Hu 2022; Zhang et al.
2023; Oord, Li, and Vinyals 2018) and multimodal fusion
(Han et al. 2021; Lv et al. 2021; Nagrani et al. 2021; Cheng
et al. 2021) through the tireless efforts of researchers.

The basic premise of the above is that the multimodal
data is complete. However, in real-world deployment, we
often encounter situations where modalities are missing.
As shown in Figure 1, for instance, camera malfunctions
may result in occluded visual features and extensive en-
vironmental noise can render audio information unusable.
These can affect model performance, therefore, address-
ing missing modalities is indispensable in practical applica-
tions.Recently, several translation-based (Pham et al. 2019;
Tang et al. 2021) and generative model-based (Zhao, Li, and
Jin 2021; Zeng, Zhou, and Liu 2022) approaches have been
proposed to address MSA in missing modalities to retain
the maximum information from all modalities. While these
approaches are attractive, the former is developed to deal
with the total missing of one or more modalities, which is
unlikely to happen in the real world. And thus we mainly
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address the case of random missing modalities. The latter
approaches predominantly concentrate on the singular as-
pect of reconstructing missing features, neglecting the im-
portance of collaboratively well-designed fusion strategies
in missing modalities. Overall, on the one hand, most of ex-
isting approaches focus primarily on designing feature re-
construction strategies independently, neglecting the crucial
issue of synergistically integrating reconstruction and fusion
strategies. On the other hand, existing research on missing
modalities usually adopts simple and identical symmetrical
parallel processing structures, such as three identical cross-
modal attention layers for interaction. It ignores the special
processing requirements of different information densities
of different modalities and fails to capture the relationship
between global and local dimensional features. Specifically,
there are natural differences in the information density of
the three modalities: text modality typically contains more
useful core information, while the audio and video modal-
ities contain complementary information. Furthermore, text
modalities are often processed by powerful feature extrac-
tors like BERT (Devlin et al. 2018), resulting in more in-
formative content. In contrast, features extracted from audio
and visual modalities by less sophisticated extractors such
as COVAREP (Degottex et al. 2014) and Facet1 may contain
partial redundancy and noise. We will verify this in subse-
quent experiments.These limitations hinder fully capturing
the complexity of multimodal data with missing modalities.

To address the above problems, we propose a robust
multi-focus multi-branch fusion model (MFMB-Net). It
contains multiple branches, and the fusion branch collabo-
rates with the reconstruction branch to reconstruct and en-
hance the missing modalities, thus improving the fidelity of
the missing information representation. Further, the well-
designed dual-stream fusion branch assigns multiple focus
to capture features at different granularities. The macro-
fusion stream contains a multi-focus module that utilizes
a coarse hub to assign focus to critical information in the
global dimension, while the micro-fusion stream is used to
integrate critical information in the local dimension. The
novel contributions of our work can be summarized as fol-
lows:

• We propose a robust model for multi-focus and multi-
branch fusion, which comprehensively considers the in-
tegration and interaction of features in the global dimen-
sion and features in the local dimension under missing
data conditions. Meanwhile, our model utilizes multiple
branch streams to coordinate the fusion and reconstruc-
tion process.

• We design a two-stream fusion branch where macro-
fusion focuses on the fusion of features in the global di-
mension and micro-fusion targets local dimension fea-
tures. This fusion strategy disperses multi-focuses on
global coarse-grained features and local fine-grained fea-
tures.

• We conduct extensive experiments on the CMU-MOSI
and CMU-MOSEI datasets under both complete and

1https://imotions.com/

missing modalities conditions, and we gain superior re-
sults to the state-of-the-art models.

Related Work
Multimodal Sentiment Analysis
Multimodal sentiment analysis integrates information from
various modalities, such as text, audio, and visual cues, to
accurately assess and interpret emotions (Morency, Mihal-
cea, and Doshi 2011). Multimodal fusion is a central as-
pect of the MSA framework, which aims to integrate rep-
resentations from different modalities into a unified and
comprehensive representation. It is common to use Trans-
former (Vaswani et al. 2017) to fuse multimodal represen-
tations. Zadeh et al. (Zadeh et al. 2018a) used LSTM to
model each modality in the temporal dimension. Zadeh et
al. (Zadeh et al. 2017) proposed a Tensor Fusion Network
to explicitly capture unimodal, bimodal, and trimodal in-
teractions through a 3-fold Cartesian product from modal-
ity embedding. Tsai et al. (Tsai et al. 2019) used cross-
modal attention mechanisms to effectively capture com-
plex bimodal interactions. Hazarika et al. (Hazarika, Zim-
mermann, and Poria 2020) used mode-invariant and mode-
specific representations by projecting each modality into two
different subspaces to reduce the gap between modalities
and capture modality. Han et al. (Han et al. 2021) designed
an innovative end-to-end bimodal fusion network that con-
ducts fusion and separation on pairs of modality represen-
tations. Paraskevopoulos et al. (Paraskevopoulos, Georgiou,
and Potamianos 2022) proposed a feedback module named
MMLatch that allows modeling top-down cross-modal in-
teractions between higher and lower-level architectures. Na-
grani et al. (Nagrani et al. 2021) proposed MBT which is
a new transformer architecture for audio-visual fusion that
restricts the cross-modal attention flow to the latter layers
of the network. Zhang et al. (Zhang et al. 2023) proposed
ALMT with an Adaptive Hyper-modality Learning (AHL)
component, which leverages language features across scales
to filter irrelevant and conflicting information from visual
and audio inputs.

Missing Modality Problem in MSA
The extensive research on complete modalities has reached
a significant depth of understanding. However, in real-world
deployments or under specific conditions, data may suf-
fer from absence or corruption. Prior works in this domain
are primarily categorized into two main strategies: 1) Gen-
erative methods, which are designed to produce new data
that conforms to the observed distribution, including tech-
niques such as Variational Auto-encoders (VAEs) and Gen-
erative Adversarial Networks (GANs). 2) Joint learning ap-
proaches, which strive to extract latent representations from
the available data, utilizing strategies such as translation-
based and cycle-consistency-based learning methods. Pham
et al. (Pham et al. 2019) proposed MCTN to learn ro-
bust joint representations through inter-modality informa-
tion translation, believing that source-to-target transitions
effectively capture shared modal information. Tang et al.
(Tang et al. 2021) proposed CTFN to achieve robustness
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Figure 2: The framework of MFMB-Net contains unimodal encoder, two-stream fusion, and reconstruction module.

against missing data through coupled translation fusion and
cyclic consistency constraints. Zhao et al. (Zhao, Li, and
Jin 2021) introduced MMIN, which also introduces cycle
consistency learning for imputing missing modalities and
devises a CRA-based module for cross-modality imagina-
tion using paired data, further proposing a network to ad-
dress uncertain missing cases. Zeng et al. (Zeng, Zhou, and
Liu 2022) proposed EMMR to employ an encoder-decoder
structure to identify and restore essential semantics from the
absent modality, effectively tackling MSA’s inconsistency
and prioritizing the influential modality for accurate sen-
timent analysis. Yuan et al. (Yuan et al. 2021) introduced
TFR-Net to strengthen model robustness against random
missing data in nonaligned modality sequences by using a
transformer-based framework for relation extraction and a
feature reconstruction network to recover missing seman-
tics. Zeng et al. (Zeng, Liu, and Zhou 2022) proposed TATE,
which incorporates an innovative tag encoding module de-
signed to handle various missing modalities. Sun et al. (Sun
et al. 2023) used EMT-DLFR to improve model performance
on incomplete data by implicitly extracting semantics and
explicitly aligning high-level representations between com-
plete and incomplete datasets using siamese representation
learning.

Methodology
As an overview of the model, Figure 2 illustrates the archi-
tecture of MFMB-Net.

Problem Definition
Complete modality data consists of unimodal raw sequences
Xm ∈ Rlm×dm from the same video clip, where lm is the se-
quence length and dm is the dimension of the representation
vector of modality m ∈ {t, v, a}, respectively. In this paper,

we tackle the missing modality issue. The input data to the
model is incomplete modality data with randomly missing
from modality m ∈ {t, v, a}, denoted as X ′

m ∈ Rlm×dm .
The goal of the task is to learn a mapping f (X ′

t, X
′
v, X

′
a)

using incomplete data to infer the sentiment score ŷ ∈ R.
Moreover, during the training phase, leveraging the full data
features along with the locations of missing features helps to
guide the learning process of representations.

Feature Extraction
To ensure consistent and accurate performance comparisons
across different approaches, we utilize the features com-
monly adopted by most MSA methods.

Text: We employ the bert-base-uncased model to extract
feature representations of text. It converts text into vectors
with 768-dimensions.

Audio: We apply COVAREP to to extract features from
the CMU-MOSI and CMU-MOSEI datasets, resulting in 5-
and 74- dimensions, respectively.

Visual: We extract 20-dimensional features from the
CMU-MOSI dataset and 35-dimensional features from the
CMU-MOSEI dataset using Facet.

Unimodal Encoders
We first encode the input Xm into the length representations
as Hm. Specifically, features extracted from the feature ex-
traction module are individually fed into fully connected net-
works. It can distill high-dimensional features into a more
concise and abstract form, and it incorporates non-linearity
to capture complex patterns.

hm = WmX ′
m + bm, m ∈ {t, v, a} (1)

where Wm, bm are the parameters of the linear layer.

1549

浅
高亮

浅
高亮

浅
高亮



Alignment
Pre-fusion alignment allows better utilization of comple-
mentary multimodal information, inspired by (Han et al.
2021), we use self-attention as the soft alignment strategy
to align the features before fusion. The shallow represen-
tations hm are fed into the hybrid parallel attention mod-
ule (HPA), which first uses self-attention to align features
and learn the dynamics within each modality, and then uses
cross-attention to learn the dynamics between modalities.

Hm = HPA(hm, hm, hm), m ∈ {t, v, a} (2)

Fusion
Our fusion module is designed with two distinct parallel
streams that cater to the unique processing demands of three
different modalities.

Macro-fusion
The first stream allocates focus to global information and is
equipped with an efficient multi-focal module. It processes
all modalities in a waterfall flow to integrate the information,
as shown in the Macro Fusion in Figure 2.

Firstly, we feed all modalities into the Transformer en-
coder separately to process and capture the complex depen-
dencies between elements in the input sequences.

Hm = Transformer(Hm, Hm, Hm), m ∈ {t, v, a}
(3)

Secondly, mapping high-dimensional data to a compact
latent space helps the network focus on key information and
filter out noise, improving accuracy and efficiency (Oord, Li,
and Vinyals 2018). We extend the progressive fusion strat-
egy in (Nagrani et al. 2021) to integrate visual, audio, and
text modalities in a multi-stage manner, utilizing a coarse
hub to guide the fusion and only extract fused features com-
pressed into a compact space.

Specifically, we introduce a coarse hub Hker of length k,
which is sequentially concatenated with visual, audio, and
text features to transport integrated key information. The
visual features are first compressed and processed to ex-
tract the key information and imported into the hub. Sub-
sequently, this visual key information interacts with the
key information of the audio features, which is imported
into the hub through further compression and fusion pro-
cesses to realize the integration of the information of both.
Finally, this fused information is communicated with the
key information of the text features to complete the final
information. This structure progressively condenses high-
dimensional data into a compact latent space through a cas-
cading, phased approach. The coarse hub gradually absorbs
coarse-grained information, guiding the integration and in-
teraction of multimodal information within the latent space.

The coarse hub flows between three modalities to com-
press the high-dimensional semantics and guide the fusion
process as shown below:

[H ′
v|H ′

ker] = Transformer
([
Hv|Hker

]
; θv

)
(4)

[H ′
a|H ′′

ker] = Transformer
([
Ha|H ′

ker

]
; θa

)
(5)

[H ′
t|H ′′′

ker] = Transformer
([
Ht|H ′′

ker

]
; θt

)
(6)

where θv ,θa,θt are the parameters of the model correspond-
ing to visual, audio, and text modality respectively. H ′′′

ker is
the coarse hub with coarse-grained information. Finally, we
obtain the representations of the macro-fusion stream:

Hf = H ′′′
ker (7)

Micro-fusion
The second stream assigns focus to local information. We
design a pseudo-Siamese network with a memory-gating
network and a coarse-to-fine fusion module to gradually in-
tegrate fine-grained information. As shown in the Micro Fu-
sion in Figure 2.

Figure 3: Coarse-to-fine Fusion Module.

Firstly, features are fed into a BiLSTM layer followed by
a tanh activation function, which captures the contextual in-
formation.

H ′
m = tanh(BiLSTM(H ′

m)), m ∈ {t, v, a} (8)
Secondly, a one-dimensional convolutional network is

used to focus on the local receptive field to ensure that each
element in the input sequence can recognize its adjacent el-
ements. Inspired by (Yuan et al. 2021), a feed-forward net-
work acting as a memory-gated network (MGN) is then em-
ployed. MGN is used to filter out irrelevant contextual infor-
mation and initially generate local coarse-grained features.

MGN = FFN(Conv1d(H ′
m)) (9)

Um = (H ′
m)×MGN, m ∈ {t, v, a} (10)

where × means element-wise product. FFN is a feed-
forward network with two linear transformations and a
ReLU activation function.

Recently, many MLP-based models like MLP-Mixer (Tol-
stikhin et al. 2021), HireMLP (Guo et al. 2022), Cyclemlp
(Chen et al. 2023) have been proposed. This is a competitive
but conceptually and technically simple alternative to MLP
alone to achieve performance comparable to CNN, Trans-
former. Finally, we design a coarse-to-fine module, which
based on a simple and effective MLP. Thanks to the excel-
lent performance of the powerful encoder and the rich infor-
mation of the modality itself, we use the text modality as a
flag to guide the visual and audio modalities through local
fusion. As shown in Figure 3. The text modality is stacked
with the visual modality and audio modality along the spa-
tial dimension respectively to obtain stacked features.

Hstacktq
= stack(Ut, Uq), q ∈ {v, a} (11)

Next, the features are rearranged and normalized to
achieve coarse interactions in the spatial dimension. We get
the further processed coarse-grained fusion features Hcok .

Hcok = BN(ϕ(Hstackk
)), k ∈ {tv, ta} (12)
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where ϕ is rearrange function. BN is the BatchNorm opera-
tion.

Then, the integrated features are stretched to the tem-
poral dimension and input into coarse-to-fine MLP layers.
By leveraging the aforementioned nonlinear and hierarchi-
cal structure for effective learning, it is possible to achieve
intricate fine-grained fusion interactions along the tempo-
ral dimension. In this way, we obtain text-guided local fine-
grained features.

Hk = ReLU(W2(LN(ReLU(W1Hcok +b1)))+b2) (13)

where LN is LayerNorm operation. W1, b1,W2, b2 are the
parameters of the linear layers. k ∈ {tv, ta}.

Finally, the local fine-grained features are concatenated to
form the final representation Hfusion of the micro-fusion.

Reconstruction
Inspired by (Geva et al. 2021), the feed-forward network
(FFN) can act as a key-value memory network. We em-
ploy self-attention to extract information, followed by a
feed-forward network consisting of two fully connected lay-
ers with a Rectified Linear Unit (ReLU). The former inte-
grates high-density information from the short-term contex-
tual memory, and the latter taps into the long-term mem-
ory and compresses the feature dimensions into the output
space. The front and back work synergistically to enhance
each other, providing support on the reconstruction branch
to restore high-fidelity features H ′

m.

H∗
m = softmax

(
(WQHm)(WKHm)T√

dm

)
(WV Hm)

(14)
H ′

m = FFN(H∗
m), m ∈ {t, v, a} (15)

where WQ, WK , and WV are corresponding mapping ma-
trices that project query, key and value vectors to different
low-dimensional spaces.

By systematically adjusting the gradients of network pa-
rameters for local short-term and global long-term memory
dimensions along the backpropagation trajectory, the model
effectively inhibits overfitting due to task-specific loss. And
it can capture the latent patterns in both missing and com-
plete data.

Prediction
Finally, the coarse global fusion features and fine local fu-
sion features obtained from each stream are concatenated to
form the final representation H = Hf + Hfusion. Then we
feed H into a layer of a fully connected network to obtain
the final sentiment prediction ŷ.

ŷ = WHH + bH (16)

where WH is the weight vectors, bH is the bias.

Objective Function
Our objective function comprises both task loss and gener-
ative loss. In our experiments, to comprehensively evaluate
model performance, we consider two tasks: a regression task
and a classification task, with losses computed separately as:

Ltask =

{
1
N

∑N
i=1 |ŷi − yi| For regression

− 1
N

∑N
i=1 yi log(ŷi) For classification

(17)

where N is the size of a mini-batch, yi and ŷi represent the
true label and the predicted label of the sample, respectively.

The generative loss between the original and the recon-
structed representation under missing conditions is as fol-
lows:

Lm
gen = SmoothL1(H

′
m⊗Mask, Xm⊗Mask),m ∈ {t, v, a}

(18)
where Mask locates missing positions in input sequences.

The final objective function:

L = Ltask +
∑

m∈{t,v,a}

αmLm
gen (19)

where αm are the weights that balance the contribution of
different modalities.

Experiments
Datasets
We conduct experiments on public multimodal sentiment
analysis benchmark datasets. The basic statistics of each
dataset are shown in Table 1.

CMU-MOSI (Zadeh et al. 2016) contains 2199 short
monologue video clips taken from 93 YouTube videos. The
utterances are manually annotated with a sentiment score
from -3 (strongly negative) to 3 (strongly positive).

CMU-MOSEI (Zadeh et al. 2018b) contains 22856 anno-
tated video segments from 1000 distinct speakers and 250
topics gathered from online websites. Each utterance is an-
notated with a sentiment intensity from [-3, 3].

Datasets Train Val Test

MOSI 552/53/679 92/13/124 379/30/277
MOSEI 4738/3540/8048 506/433/932 1350/1025/2284

Table 1: Statistics from the two MSA benchmark datasets.
Each dataset is divided into sample sizes for different emo-
tional tendencies, which are negative, neutral, and positive.

Model Acc-2 Acc-7 F1

FC(V) 44.79/42.3 15.48 61.45/59.03
FC(A) 44.94/42.43 15.43 61.54/59.08
FC(T) 66.97/67.18 28.92 69.34/69.49

Concat(V,A,T) 68.15/68.33 29.07 72.60/72.78

Table 2: Unimodal experiments on CMU-MOSI dataset. FC
denotes a fully connected network of unimodal data, and
Concat denotes a fully connected network of three modal-
ities connected after simple concatenation.
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CMU-MOSI CMU-MOSEI

Model MAE Corr Acc-7 Acc-5 Acc-2 F1 MAE Corr Acc-7 Acc-5 Acc-2 F1

TFN1 0.901 0.698 34.9 - -/80.8 -/80.7 0.593 0.700 50.2 - -/82.5 -/82.1
LMF1 0.917 0.695 33.2 - -/82.5 -/82.4 0.623 0.677 48.0 - -/82.0 -/82.1
MulT1 0.846 0.725 40.4 46.7 81.7/83.4 81.9/83.5 0.564 0.731 52.6 54.1 80.5/83.5 80.9/83.6
MISA1 0.804 0.764 - - 80.8/82.1 80.8/82.0 0.568 0.724 - - 82.6/84.2 82.7/84.0
Self-MM1 0.717 0.793 46.4 52.8 82.9/84.6 82.8/84.6 0.533 0.766 53.6 55.4 82.4/85.0 82.8/85.0
TFR-Net1 0.721 0.789 46.1 53.2 82.7/84.0 82.7/84.0 0.551 0.756 52.3 54.3 81.8/83.5 81.6/83.8
MMIM1 0.712 0.790 46.9 53.0 83.3/85.3 83.4/85.4 0.536 0.764 53.2 55.0 82.5/85.0 82.4/85.1
Ours 0.709 0.798 45.8 53.7 82.7/85.7 83.2/86.0 0.532 0.758 54.2 55.9 84.7/85.1 85.0/85.1

Table 3: Overall performance comparison on CMU-MOSI and CMU-MOSEI datasets under complete data setting. 1 means the
results provided by (Sun et al. 2023).

Metrics
We evaluate the mean absolute error (MAE) and pearson
correlation coefficient (Corr) for regression, seven-class ac-
curacy (Acc-7), five-class accuracy (Acc-5), binary accuracy
(Acc-2), and F1 score on CMU-MOSI and CMU-MOSEI.
Following (Yuan et al. 2021), we compute the Area Under
Indicators Line Chart (AUILC) value for each above metric
to evaluate the overall performance of the model under dif-
ferent modality missing rates. Suppose that the performance
on a metric under increasing missing rates {r0, r1, . . . , rt}
is {x0, x1, . . . , xt}. The AUILC value is formally defined as
follows:

AUILC =

t−1∑
i=0

1

2
(xi + xi+1)(ri+1 − ri) (20)

Implementation Details
We implement the proposed model using the PyTorch frame-
work. The model is trained with a single Nvidia GeForce
RTX 3090 GPU. We employ the technique of Random
Masking to simulate incomplete modal data sets by indepen-
dently generating random temporal masks for each modality.
For the audio and video modality, we add white Gaussian
noise on the original feature with a zero vector while for
the text modality (Hazarika et al. 2022), and we replace the
original token with the [UNK] token. For model training,
we employ an Adam optimizer and adopt an early-stopping
strategy with a patience of 6 epochs. In both datasets, the
learning rate is set to 0.002 and the batch size is 24.

Baselines
We consider general MSA methods and targeted methods as
baselines to assess the comprehensive performance of our
methods in both incomplete and complete dataset settings.

TFN (Zadeh et al. 2017) uses a multi-dimensional tensor
by calculating the outer product among different modalities
to capture unimodal, bimodal and trimodal interactions.

LMF (Liu et al. 2018) leverages low-rank multimodal fu-
sion methods that utilize low-rank tensors to improve effi-
ciency and reduce the complexity of tensor fusion.

MulT (Tsai et al. 2019) integrates directional pairwise
cross-modal attention to enhance three sets of Transform-

ers, facilitating end-to-end multimodal data interaction and
latent stream adaptation without explicit alignment.

MISA (Hazarika, Zimmermann, and Poria 2020) ad-
dresses the distributional gaps in multimodal signals by
projecting each modality into two subspaces: a shared,
modality-invariant space that minimizes gaps and a unique,
modality-specific space for distinct features.

Self-MM (Yu et al. 2021) uses a self-supervised label
module for unimodal supervision and combines multimodal
and unimodal training to learn shared and distinct features.

TFR-Net (Yuan et al. 2021) uses a reconstruction module
with SmoothL1Loss to effectively address random missing
data in non-aligned modality sequences and learn semantic
features in the case of missing modalities.

MMIM (Han, Chen, and Poria 2021) improves perfor-
mance by maximizing mutual information for task-relevant
multimodal fusion, using parametric and non-parametric ap-
proximations, and co-training with the main task.

Unimodal Experients
As mentioned earlier, due to the significant differences in
information density across modalities, different modalities
require varying levels of processing. To verify this idea,
we conducted experiments with unimodal and simple fused
multimodal representations. Specifically, unimodal features
were encoded through the fully connected layer and then
classified, while multimodal features were simply concate-
nated together and fed into the fully connected layer for
classification. Table 2 indicates that textual information is
richer than visual or audio, suggesting noise or redundancy
in the latter. This indicates the need for denoising and effec-
tive feature integration across modalities to enhance overall
performance. Simple concatenation-based fusion improves
unimodal performance, highlighting the importance of mul-
timodal fusion. This demonstrates the need for cross-modal
denoising and effective multimodal fusion to enhance over-
all performance.

Complete Modality Setting
We compare our model with MSA baselines using complete
data to demonstrate its validity and competitiveness.

From Table 3, we observe that our model achieves the
best performance in almost all metrics. We attribute these
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CMU-MOSI CMU-MOSEI

Model MAE Corr Acc-7 Acc-5 Acc-2 F1 MAE Corr Acc-7 Acc-5 Acc-2 F1

TFN1 1.316 0.308 22.3 23.7 61.0/60.9 59.7/59.7 0.695 0.500 46.1 46.6 75.2/74.1 73.4/71.5
LMF1 1.310 0.299 21.5 22.7 59.7/59.3 56.4/56.1 0.718 0.447 45.3 45.7 72.2/73.9 69.5/69.4
MulT1 1.263 0.348 23.1 24.6 63.1/63.2 60.7/61.0 0.700 0.504 46.3 46.8 74.4/75.1 72.9/72.6
MISA1 1.202 0.405 25.7 27.4 63.9/63.7 59.0/58.8 0.698 0.514 45.1 45.7 75.2/75.7 74.4/74.0
Self-MM1 1.162 0.444 27.8 30.3 66.9/67.5 65.4/66.2 0.685 0.507 46.7 47.3 75.1/75.4 73.7/72.9
TFR-Net1 1.156 0.452 27.7 30.5 67.6/67.8 65.7/66.1 0.689 0.511 46.9 47.3 74.7/74.2 73.5/73.4
MMIM1 1.168 0.450 27.0 29.4 66.8/66.9 64.6/65.8 0.694 0.502 45.9 46.4 74.9/72.4 74.4/69.3
Ours 1.115 0.461 27.5 30.5 66.4/67.0 69.3/69.8 0.680 0.524 47.0 47.9 72.8/75.0 73.0/76.2

Table 4: Overall performance comparison on CMU-MOSI and CMU-MOSEI datasets in the incomplete modality setting. The
reported results are the AUILC values for each evaluation metric, calculated under missing rates of {0, 0.1, . . . , 1.0}.

pleasing results to the effective multi-focus fusion strategy
and multi-branch collaborative structure of the model. The
macro-fusion stream and micro-fusion stream of the former
disperse the focus to local and global features, while the lat-
ter comprehensively integrates Local and global features in
each fusion stream. For example, compared to the second-
ranked model in each metric, our model improves by 0.005
in Corr, 0.6% in F1, 0.5% in Acc-5 on the CMU-MOSI
dataset. On the CMU-MOSEI dataset, it improves by 0.6%
in Acc-7, 0.5% in Acc-5, and 2.2% in F1. In conclusion, the
above results demonstrate the effectiveness of the model.

Model Robustness Study
Then, we focus on evaluating the robustness of the model
under conditions of random modality missing. In the CMU-
MOSEI dataset, as shown in Table 4, our model outperforms
the state-of-the-art methods in nearly all metrics. For in-
stance, there is a 0.6% improvement in Acc-5 and a 2.2%
increase in the F1 score. This demonstrates that the net-
work comprehensively considers the fusion and interaction
of global dimensional features and local dimensional fea-
tures under missing data conditions. Meanwhile, it success-
fully utilizes multiple branch to coordinate the fusion and
reconstruction process to reconstruct and enhance insuffi-
cient data. The results in the CMU-MOSI dataset also show
that our model surpasses state-of-the-art methods in metrics
such as MAE, Corr, Acc-5, and F1. At the same time, we
observed that the model’s performance on the Acc-2 met-
ric is relatively weak. By analyzing the statistical features of
the dataset samples, we infer the possible reasons: Firstly,
the sample polarity distribution is uneven, with more posi-
tive and negative data, which causes data imbalance and may
lead the model to favor the more frequent class. Secondly,
as a binary classification metric, Acc-2 has low class distin-
guishability and struggles to capture the subtle differences
between the two classes. These factors together explain the
model’s underperformance on this metric. However, these
experimental results demonstrate the superiority and robust-
ness of our model in unstable environments.

Ablation Study
We investigate the contribution of the macro fusion and the
pseudo-Siamese micro fusion as well as the reconstruction

module in the multi-branch strategy. From the Table 5, we
observe that removing any module results in varying de-
grees of performance degradation. Specifically, the impact
of the absence of the reconstruction module is the most pro-
nounced, resulting in a 1.4% degradation for Acc-7 and a
0.7% degradation for Acc-5. This underscores the impor-
tance of the reconstruction module when dealing with miss-
ing data. Compared with micro-fusion stream, the effect of
removing macro-fusion stream is not significant. This shows
that macroscopic global features carry less useful informa-
tion density than microscopic local features, but they are in-
deed necessary. These studies confirm the effectiveness of
the proposed module in improving model performance.

Model Corr Acc-2 Acc-5 Acc-7 F1

w/o F-1 0.451 66.4/66.4 29.3 27.1 69.1/69.0
w/o F-2 0.461 66.1/66.0 29.0 26.3 68.0/67.7

w/o Recon 0.422 65.8/66.0 29.0 26.1 68.2/68.4
MFMB-Net 0.461 66.4/67.0 30.3 27.5 69.3/69.8

Table 5: Ablation study on CMU-MOSI dataset. F-1 means
the macro fusion while F-2 means the micro fusion. Recon
means the reconstrcution module.

Conclusion and Future Work
In this paper, we propose MFMB-Net, a multi-focus-driven
multi-branch network. It synergistically integrates fusion
and reconstruction to simultaneously capture global and lo-
cal dynamics within and between modalities. Specifically, it
abandons the same symmetrical parallel processing struc-
ture and adopts a multi-branch structure. The multi-focus
module in the macro fusion stream uses coarse hubs to al-
locate focus to key information in the global dimension, and
the micro fusion stream is used to integrate key information
in the local dimension. The two-stream fusion branch col-
laborate with the reconstruction process to reconstruct and
enhance the missing data, thereby improving the representa-
tion fidelity of the lost information. In future work, we will
explore more efficient strategies for handling missing data
and extend the network’s applicability to address data im-
balance issues. Additionally, we plan to incorporate external
knowledge to improve robust representation and fusion.
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